The process of uncovering patterns and finding anomalies and relationships in large datasets to make predictions about future trends
Over 1.8 million professionals use CFI to learn accounting, financial analysis, modeling and more. Start with a free account to explore 20+ always-free courses and hundreds of finance templates and cheat sheets.
Data mining is the process of uncovering patterns and finding anomalies and relationships in large datasets that can be used to make predictions about future trends. The main purpose of data mining is to extract valuable information from available data.
Data mining is considered an interdisciplinary field that joins the techniques of computer science and statistics. Note that the term “data mining” is a misnomer. It is primarily concerned with discovering patterns and anomalies within datasets, but it is not related to the extraction of the data itself.
Applications
Data mining offers many applications in business. For example, the establishment of proper data (mining) processes can help a company to decrease its costs, increase revenues, or derive insights from the behavior and practices of its customers. Certainly, it plays a vital role in the business decision-making process nowadays.
Data mining is also actively utilized in finance. For instance, relevant techniques allow users to determine and assess the factors that influence the price fluctuations of financial securities.
The field is rapidly evolving. New data emerges at enormously fast speeds while technological advancements allow for more efficient ways to solve existing problems. In addition, developments in the areas of artificial intelligence and machine learning provide new paths to precision and efficiency in the field.
Data Mining Process
Generally, the process can be divided into the following steps:
Define the problem: Determine the scope of the business problem and objectives of the data exploration project.
Explore the data: This step includes the exploration and collection of data that will help solve the stated business problem.
Prepare the data: Clean and organize collected data to prepare it for further modeling procedures.
Modeling: Create a model using data mining techniques that will help solve the stated problem.
Interpretation and evaluation of results: Draw conclusions from the data model and assess its validity. Translate the results into a business decision.
Data Mining Techniques
The most commonly used techniques in the field include:
Detection of anomalies: Identifying unusual values in a dataset.
Dependency modeling: Discovering existing relationships within a dataset. This frequently involves regression analysis.
Clustering: Identifying structures (clusters) in unstructured data.
Classification: Generalizing the known structure and applying it to the data.
Additional Resources
CFI offers the Business Intelligence & Data Analyst (BIDA)® certification program for those looking to take their careers to the next level. To keep learning and advancing your career, the following CFI resources will be helpful:
Develop analytical superpowers by learning how to use programming and data analytics tools such as VBA, Python, Tableau, Power BI, Power Query, and more.
Take your learning and productivity to the next level with our Premium Templates.
Upgrading to a paid membership gives you access to our extensive collection of plug-and-play Templates designed to power your performance—as well as CFI's full course catalog and accredited Certification Programs.
Gain unlimited access to more than 250 productivity Templates, CFI's full course catalog and accredited Certification Programs, hundreds of resources, expert reviews and support, the chance to work with real-world finance and research tools, and more.